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Endogenous circadian rhythms are biological processes generated by an internal

body clock. They are self-sustaining, and they govern biochemical and physiological

processes. However, circadian rhythms are influenced by many external stimuli to

reprogram the phase in response to environmental change. Through their adaptability

to environmental changes, they synchronize physiological responses to environmental

challenges that occur within a sidereal day. The precision of this circadian system

is assured by many post-translational modifications (PTMs) that occur on the protein

components of the circadian clock mechanism. The most ancient example of circadian

rhythmicity driven by phosphorylation of clock proteins was observed in cyanobacteria.

The influence of phosphorylation on the circadian system is observed through different

kingdoms, from plants to humans. Here, we discuss how phosphorylation modulates

the mammalian circadian clock, and we give a detailed overview of the most critical

discoveries in the field.
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INTRODUCTION

Circadian rhythms consist of adaptive physiological responses, which allow organisms to anticipate
changes in light-dark cycle that occurs within 24-h. Exogenous stimuli (also referred to as
zeitgebers or time givers), such as light, temperature, and nutrients, can entrain organisms to
the 24-h cycle (Schibler and Sassone-Corsi, 2002). At the evolutionary level, regular changes
in light and temperature around the day have favored the formation of genetic circuits, called
internal circadian clocks. These clocks can keep track of daily changes and prepare the organism
to adapt to them (Panda et al., 2002b). Biological clocks are observed from prokaryotes
to mammals, suggesting that these mechanisms are highly conserved across the kingdoms
(Bell-Pedersen et al., 2005). At the molecular level, the internal circadian clock can be described
as a transcriptional-translational feedback loop (TTFL) (Dunlap et al., 1999). In mammals, the
heterodimer of two basic helix-loop-helix/PAS domain-containing transcription factors, CLOCK:
BMAL1 (or NPAS2: BMAL1), orchestrate this regulatory feedback loop by binding the E-boxes
present on promoters of other clock genes such as Per (Per1, Per2, Per3) and Cry (Cry1, Cry2)
genes. Per and CrymRNAs are translated into proteins in the cytoplasm, and subsequently, they go
back into the nucleus as PER homodimers (Kucera et al., 2012) and PER:CRY heterodimers or CRY
monomers (Chiou et al., 2016). In the nucleus, they suppress the CLOCK: BMAL1 transcriptional
activity regulating their accumulation (Buhr and Takahashi, 2013) (Figure 1). Also, the nuclear
receptors belonging to REV-ERB and ROR families play a role in stabilizing the robustness of the
feedback loop controlling the oscillation of BMAL1 gene expression (Preitner et al., 2002; Akashi
and Takumi, 2005; Takeda et al., 2012; Ikeda et al., 2019) (Figure 1).
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In mammals, the circadian rhythmicity is modulated by
the suprachiasmatic nucleus (SCN) of the hypothalamus. The
SCN coordinates, comparable to an orchestra’s conductor, the
“tempo” of the clocks placed all over the body (Reppert and
Weaver, 2002). Thereby, the cellular feedback loop described
above is responsible for the oscillation of about 10–20% of
all genes expressed (Panda et al., 2002a; Storch et al., 2002).
Nevertheless, 20% of oscillating proteins do not show signs of
rhythmicity at the mRNA level. This evidence suggests that the
transcriptional feedback loop is not the only mechanism involved
in the generation of rhythmicity in living organisms (Robles et al.,
2014). In addition to transcriptional regulation, many different
levels of regulation can be taken into consideration, such as
chromatin remodeling, post-transcriptional, translational, and
post-translational modifications (Aguilar-Arnal and Sassone-
Corsi, 2013; Kojima and Green, 2015; Michael et al., 2015;
Hirano et al., 2016). Of particular interest in this review are
post-translational modifications (PTMs), which are covalent
modifications on proteins that confer specific new features
to them. These modifications influence cellular localization,
protein-protein interactions, and protein stability (Mehra et al.,
2009). The most ancient example of circadian rhythmicity is
present in cyanobacteria. In this organism, in contrast to the
mammalian TTFL, the circadian clock is generated and driven
by a post-translational oscillator (PTO) (Iwasaki et al., 2002;
Nakajima et al., 2005; Chang et al., 2015; Tseng et al., 2017).
The PTO consists of three different proteins, KaiA, KaiB, and
KaiC. KaiC is provided with autokinase and autophosphatase
activity. During the light phase, KaiA can bind and stabilize KaiC,
promoting KaiC autophosphorylation at residues Ser-431 and
Thr-432. This process is counteracted by KaiB, which sequesters
KaiA at night, promoting KaiC autodephosphorylation. The
counterbalanced activity of both KaiA and KaiB on KaiC is
responsible for the diurnal oscillation of the phosphorylation
state (Figure 2). Since mammalian phosphorylation of clock
proteins have also been observed, it appears that phosphorylation
is a highly conserved PTM across kingdoms involved in the
generation of circadian rhythmicity (Baker et al., 2009; Reischl
and Kramer, 2011). Phosphorylation is a reversible PTM that
occurs on serine (90%), threonine (10%), and tyrosine (0.05%)
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Rich Repeat Protein 3; DNA-PKcs, DNA-dependent protein kinase; MAPKKinase,
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residues of amino acids. This dynamic change can produce a
fast and precise alteration of protein characteristics, which in
turn affects many biological processes (Seet et al., 2006). Here,
we will give an overview of some of the important discoveries
made in the last decades about how phosphorylation can regulate
the circadian clock in mammals and how this is coupled to
physiological responses. Finally, we will discuss the involvement
of circadian phosphorylation in diseases.

LIGHT: DARK DRIVEN
PHOSPHORYLATION OF THE CLOCK
MACHINERY

The Positive Loop
The heterodimer CLOCK: BMAL1 is the core complex of
the positive loop that regulates the circadian transcription in
mammals. It displays a maximal promoter occupancy of clock-
controlled genes between ZT5 and ZT8 (Ripperger and Schibler,
2006). However, levels of CLOCK and BMAL1 total proteins
do not oscillate dramatically. Thus, protein oscillation is not
sufficient to justify such a tight temporal profile of nuclear
accumulation and promoter occupancy. This evidence implies
that PTMs are required to dictate the precise temporal/spatial
organization of the circadian positive core complex. Some
observations indicated that the phosphorylation of the CLOCK
protein is relevant. First, the oscillatory profile of CLOCK
phosphorylation was peaking at ZT18, and this modification was
able to trigger its degradation (Yoshitane and Fukada, 2009).
Second, Clock 119 mutant mice, which contain a deletion of
exon 19, display a prolonged period compared to wild type
controls (King et al., 1997). Third, the phosphorylation level of
CLOCK 119 was lower than the wild type, and the protein was
more stable.

Additionally, Clock 119 showed a weaker transactivation
activity, without affecting its heterodimerization with BMAL1
(King et al., 1997). These observations led scientists to study
andmap putative CLOCK phosphorylation sites. Two interesting
phosphorylation sites were mapped on Serine-38/S42 (Ser-
38/42) located in the basic Helix-Loop-Helix (bHLH) domain
(Yoshitane et al., 2009). The results indicated that these specific
phosphorylations were a marker for a two-step process. First,
CLOCK transactivation activity is inhibited when the protein is
phosphorylated at those sites. Second, double phosphorylation at
Ser-38/42 is a signal for protein translocation to the cytoplasm.

On the other hand, recent studies on the circadian liver
phosphoproteome found CLOCK phosphorylation at sites Ser-
446 and Ser-440/441, which increase transcriptional activity
(Robles et al., 2017). Additionally, there is evidence supporting
that the cytoplasmic-nuclear distribution of CLOCK is regulated
by Cyclin-Dependent Kinase 5 (CDK5) (Kwak et al., 2013).

These observations suggest a three-step regulation of CLOCK
by phosphorylation. First, CDK5-mediated phosphorylation at
Threonine 451/461 (Thr-451/461) promotes CLOCK nuclear
localization. Here, modifications at Ser-446 and Ser-440/441
increase CLOCK transactivation activity (Figure 3, ZT0-12),
and subsequently, modifications at Ser-38/42 shut down the
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FIGURE 1 | A general model of the canonical circadian molecular feedback loop. CLOCK and BMAL1 promote the expression of clock-controlled genes (ccgs), and

genes encoding PERs and CRYs. PER (1, 2, 3) and CRY (1, 2) are progressively accumulated in the cytoplasm and subsequently shuttled into the nucleus as

hetero/homodimers. Here, they repress the CLOCK: BMAL1 transactivation. Rev-erb and Ror gene expression is also regulated by CLOCK: BMAL1 transactivation.

Both their protein products, REV-ERB, and ROR, compete for the ROR responsive elements (ROREs) within the Bmal1 promoter driving its circadian gene expression.

TSS, Transcriptional Start Site.

gene expression (Figure 3, ZT12-16). However, none of these
phosphosites is associated with known kinases. Still, CLOCK-
interacting protein circadian (CIPC), which is an additional

negative-feedback regulator of the circadian clock, modulates
the phosphorylation at Ser-38/42 (Yoshitane and Fukada, 2009).
While the phosphorylation at Ser-38/42 is associated with loss
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FIGURE 2 | The basic model of the KaiABC circadian oscillator. KaiC consists of two double donut hexamers (CI, CII) one fused one on the top of the other. During

the day, the KaiC upper hexamer can interact with KaiA through its tentacular A-loop and it can be phosphorylated at Threonine 432 (Thr-432), in presence of ATP.

The first set of phosphorylation at Thr-432 triggers the subsequent phosphorylation at Serine 431 (Ser-431), which favors the binding to KaiB at dusk. This event

causes a change of conformation in the KaiC quaternary structure. Here, during the night phase, KaiB can sequestrate KaiA, and KaiC starts the auto

dephosphorylation process. During the late-night, when KaiC is hypophosphorylated at sites Thr-432 and Ser-431 it releases KaiA and KaiB. This event leads to a

new change of conformation of KaiC which makes it ready for a new cycle.

of transactivation and cytoplasmic retention of CLOCK, it does
not explain the subsequent degradation of the protein. A further
investigation led to the identification of specific clusters of amino
acids (aa 425-461) involved in the degradation of CLOCK.
Phosphorylation at Ser-427 by Glycogen Synthase Kinase 3
Beta (GSK3β), which requires a priming kinase, is involved in

the regulation of CLOCK degradation (Spengler et al., 2009).
It has been shown that the Ser-431 is the priming site and,
although the kinase involved in this particular modification
is unknown, results show that the specific phosphorylation is
BMAL1-dependent. BMAL1-dependent GSK3β phosphorylation
of CLOCK at Ser-427 leads to protein degradation via the
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FIGURE 3 | The diurnal nucleus/cytoplasm shuttling of clock factors is mediated by phosphorylation. During the day (ZT0-ZT12), Clock is phosphorylated by CDK5 at

specific sites Threonine 451 and 461, while BMAL1 is phosphorylated by CK2 at Serine 90. Somehow these events can promote heterodimerization and shuttle from

(Continued)
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FIGURE 3 | the cytoplasm to the nucleus. Here, CLOCK is phosphorylated at Serine 440-441-446, and this post-translational modification promotes the

transactivation mediated by CLOCK: BMAL1. During the early night (ZT12-16), CDK5 mediated phosphorylation of PER2 at Serine 394. This event promotes

heterodimerization with CRY1 and probably, the assembling of the cytoplasmic macromolecular negative complex consisting also of PER1, CRY1, CK2β, and CKI ε/δ.

This macromolecular complex goes into the nucleus and it complexes with the CLOCK: BMAL1 heterodimer. This event is promoted by phosphorylation of CRY1 at

Serine 247 and 588, CRY2 at Serine 265. CLOCK is phosphorylated at Serine 38 and 42 which leads to the transactivation shut down. During the late-night

(ZT16,-20), the nuclear macromolecular complex is disassembled. CLOCK undergoes subsequent phosphorylation at Serine 431 and 427, the second one mediated

by GSK3β, which also phosphorylates BMAL1 at Serine 17 and 21. This even triggers CLOCK: BMAL1 shuttling to the cytoplasm followed by proteasomal

degradation. CKI can phosphorylate both PER2 and PER1, respectively at Serine 477 (PER2) and Serine 902/916 (PER1). PER2 is additionally phosphorylated by

CK2 at serine 53. All these events promote PER1/PER2 degradation in the cytoplasm mediated by β-TRCP1/2. CRY1 is translocated into the nucleus after being

dephosphorylated at Serine 588. Here it is degraded by the proteasomal complex formed by FBXL3 and FBXL21. On the other hand, CRY2 is phosphorylated at

Threonine 300, and this modification drives its degradation mediated by FBXW7-SCF. All these events between ZT16 and ZT24 close the 24 h cycle.

proteasome (Figure 3, ZT16-24). Thus, the CLOCK bound to
E-boxes can be removed for the next round of transcriptional
activation, closing the transcriptional feedback loop. The
promoter clearance is a necessary step to keep the circadian
profile of gene expression finely modulated and “on time.”
Altogether, these pieces of evidence highlight the importance
of CLOCK turnover and localization in the regulation of the
circadian clock.

When the first circadian genes were discovered, high efforts
were made to define whether enzymes, called periodically
fluctuating kinases (PFKs), could regulate circadian proteins
(Tamaru et al., 1999). Among them, p45PFK, a serine/threonine-
protein kinase later identified as Casein Kinase 2α catalytic
subunit (CK2α), was able to phosphorylate BMAL1 at Serine
90 (Ser-90), which displayed circadian oscillation, promoting
cytoplasm/nuclear translocation (Tamaru et al., 2009). This
phosphorylation is a prerequisite for the CLOCK: BMAL1
heterodimerization and transactivation (Figure 3, ZT0-12). Loss
of phosphorylation at Ser-90 showed arrhythmic activity in
mice fibroblasts. Additionally, suppression of this specific
phosphorylation in the SCN led to dampening circadian gene
expression, suggesting the involvement of pSer-90 in the
BMAL1-dependent transcription (Tamaru et al., 2015). These
observations demonstrated that the phosphorylation of BMAL1
at Ser-90 was crucial for the central and peripheral clock. Results
obtained from different groups suggest that pSer-90 promotes
acetylation of BMAL1 at Lysine-537, which is a prerequisite for
BMAL1 to recruit CRY1 (Tamaru et al., 2009).

This specific modification at Ser-90 is suppressed by CRY1-
mediated periodic binding of BMAL1 with CK2β. Indeed,
the heterodimer BMAL1: CRY1 promotes the association
between BMAL1 and CK2β, which leads to a decrease of
phosphorylation at Ser-90. This event is followed by inhibition
of transcriptional activation of clock-controlled genes. These
combined processes are responsible for the circadian oscillation
of this specific modification.

When pSer-90 goes down, and the repressive phase starts,
BMAL1 complexes with RACK1 and Ca2+-sensitive protein
kinase C subunit α (PKCα) that leads to the inhibition of the
transactivation activity (Robles et al., 2010) (Figure 3, ZT12-16).

Subsequently, GSK3β phosphorylates BMAL1 at Ser-17/ Thr-
21 and priming it for ubiquitination (Sahar et al., 2010).
Protein degradation follows the ubiquitination of BMAL1
through the HECT-type E3 ligase (UBE3A) (Gossan et al., 2014)
(Figure 3, ZT16-20).

The Negative Loop
The so-called “nuclear PER complex,” with a mass of circa 1.9
Mda is a complex based on the physical interaction between, at
least, PER1-3, CRY 1-2, Casein Kinase I δ/ε (CKI δ/ε), which
functions as repressor machinery of the circadian clock (Aryal
et al., 2017). It is recruited onto the heterodimer CLOCK:
BMAL1. It is responsible for turning off transcription and
dissociation of CLOCK: BMAL1 from the chromatin, thereby
closing the transcriptional-translational loop. A critical aspect of
the formation of the repressive complex is the profound time
delay of several hours between protein production and nuclear
accumulation (Vanselow and Kramer, 2007). Additionally,
PER proteins show a large amplitude in the oscillation of
phosphorylation levels in both the central and peripheral clock
(Lee et al., 2001). This evidence highlights the need to better
understand the role of phosphorylation in the generation of
circadian rhythmicity.

PER2 nuclear entry is favored by heterodimerization with
CRY1 (Miyazaki et al., 2001; Chaves et al., 2006). For many years
it was unknownwhether phosphorylation could regulate this step
of the circadian clock. Recent evidence suggests that CDK5 is
likely to be involved in this process (Brenna et al., 2019). This
kinase can phosphorylate PER2 in the SCN at Serine 394 (Ser-
394) in a circadian fashion. The peak of this specific modification
reaches the maximum at ZT12, at the transition between the light
and dark phase. Additional experiments demonstrated that PER2
pSer-394 is more prone to bind CRY1, and unphosphorylated
PER2 is confined to the cytoplasm and eventually degraded.
The PER2: CRY1 cytoplasmic complex also comprises PER1 and
CKI, which is also a candidate to be the target of CDK5 at the
specific site Thr-347, as evidenced in vitro (Eng et al., 2017). Thus,
CDK5 might be the kinase priming the formation of the large
cytoplasmic complex, described by Aryal et al. (2017) (Figure 3,
ZT0-12). This finding explains the genesis of the negative loop
in the mammalian circadian clock. Finally, it has been proposed
that also GSK3β might influence PER2 nuclear accumulation
independently by the interaction with CRY1 (Iitaka et al., 2005).

PER2 nuclear translocation oscillates during the day. In the
SCN, the total PER2 protein starts to rise at ZT 8 (Brenna et al.,
2019) and peaks at ZT 16 (Nam et al., 2014), where it interacts
with CKI δ/ε (Figure 3 12-16). It has been reported that CKIε
targets PER2 to the proteasomal degradation (26S proteasome),
via interaction with a member of the Skp-Cullin-F box (SCF)
E3 ubiquitin ligase complex containing Beta-transducin repeats-
containing proteins 1-2 [β-TrCP1-2 (Reischl et al., 2007;
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Ohsaki et al., 2008)]. These specific E3 ligases need priming
phosphorylation to bind the targets called phosphodegrons. CKI
phosphorylates the Serine-477 (Ser-477) of PER2, priming the
binding sites recognized by β-TrCP (Eide et al., 2005). Finally,
PER2 is also phosphorylated by CKII2 at Serine-53 (Tsuchiya
et al., 2009). However, the importance of this site is still unknown,
although it has been proposed that CKII might support CKI in
the regulation of the PER2 degradation pathway.

Many pieces of evidence suggested that CK1ε can promote the
turnover of both PER 1/2 proteins (Akashi et al., 2002; Virshup
et al., 2007). Further investigation showed that CKIε-mediated
phosphorylation of PER1 at the serine cluster from amino acids
902 to 916 was responsible for masking its NLS motive and
subsequently translocation from the nucleus to the cytoplasm
of this specific circadian factor (Vielhaber et al., 2000). PER1
degradation is also driven by interaction with β -TRCP1 and β -
TRCP2, mediated by CKI/ CK1γ2–(Shirogane et al., 2005; Hirota
et al., 2010) (Figure 3, ZT16-24).

CRY proteins complete the repressive complex formed by
PERs and CKI, which regulates the negative loop of the circadian
clock. Investigations demonstrated that FBXL3 drives CRY
ubiquitination and proteasomal degradation (Busino et al., 2007;
Godinho et al., 2007; Siepka et al., 2007).

Phosphorylation of CRY1 at serine-588 in the C-term
regions seems to stabilize the protein in the nucleus (Figure 3,
ZT12-16). Additional studies showed that this phosphorylation
diminishes nuclear protein localization and destabilizes the
interaction with FBXL3. Although the kinase responsible for
Ser-588 phosphorylation is still unknown, it appeared that this
modification is negatively regulated by the DNA-dependent
protein kinase (DNA-PKcs) (Gao et al., 2013), which promotes
CRY1 degradation (Figure 3, ZT16-24).

Moreover, CRY1 can be phosphorylated at the Serine-247
by Mitogen-Activated Protein Kinase (MAPK Kinase). In this
specific case, the mutation S-G did not affect CRY1, whereas
the mutation S-D impaired the function of inhibiting CLOCK:
BMAL1 transcriptional activity. Since this phosphorylation is
placed near FAD-contacting amino acid residues, these results
would suggest that the amino acid charge of this site is more
critical than the phosphorylation per se in the regulation of CRY1
activity (Sanada et al., 2004).

Additionally, the same MAPK Kinase can phosphorylate
CRY2 at Serine-265 (Ser-265) with the same effect on the
regulation of the catalytic activity (Sanada et al., 2004).

On the other hand, the FBXW7-containing SCF complex
ubiquitination drives CRY2 degradation. This mechanism
requires phosphorylation Thr-300 within the phosphodegron
300-TPPLS-304 (Fang et al., 2015). A schematic summary of the
main phosphorylations discussed is shown in Table 1.

CKI δ/ε -DEPENDENT PHOSPHOSWITCH
OF PER2

Drosophila double time (DBT) was the first kinase observed to
have a dramatic impact on circadian rhythmicity (Price et al.,
1998). DBT shares 86% of identity with the mammalian CKI

epsilon, which appears to play a similar role. In 1988, the
Tau mutation was discovered in the Syrian hamster. Later this
mutation was identified to be a single nucleotide substitution
in the sequence of the Ck1ε gene, which changed the protein
structure leading to a gain-of-function (Lowrey et al., 2000).
These mutant rodents displayed a significant shortening of
the circadian period, about 22 h, which resembled the Per1-
2 phenotype (Lowrey et al., 2000; Gallego et al., 2006). Thus,
Ck1εtau was the first mammalian circadian mutant discovered.
On the other hand, the Ck1ε null mutant slightly lengthened the
period (Vielhaber et al., 2000).

Since ε and δ are the main CK1 isoforms involved in the
circadian regulation, the role of CKI δ in the circadian clock
was also studied. CKI δ−/− SCN explants (mice showed prenatal
lethality) were tested using real-time bioluminescence recording
to quantify the circadian period at the cellular level. The results
showed a more extended period in CKI δ−/− explants compared
to both WT and CKIε null mutants. These results suggested a
hierarchical organization where CKIδ might be dominant over
Ck1ε (Etchegaray et al., 2009).

CKI can regulate PER2 stability in different ways. CKI-
mediated phosphorylation of Serine-477 (Ser-477) was discussed
before (see section The Negative Loop). Additionally, due
to the -not clear- redundant activity of CK1ε and δ (Lee
et al., 2009), both kinases can phosphorylate PER proteins at
different sites. For instance, PER2, which contains more than 20
phosphorylation sites (Vanselow et al., 2006), can be sequentially
phosphorylated at Serine-659/662/665/668/671 (Shanware et al.,
2011) (Figure 4, Table 1). The progressive phosphorylation is
dependent on the Ser-659. This specific serine is the priming
site, which is phosphorylated by CKIδ/ ε (Narasimamurthy et al.,
2018). As previously shown, CKIδ has two splicing variants,
CK1δ1 and CK1δ2 (Fustin et al., 2018). CK1δ2, which is 16 aa
shorter in the C-terminal region, resembles more CK1ε. Further
experiments showed that CK1δ2 and CK1ε are both able to
phosphorylate PER2 at Ser-659 better than CK1δ1, in vitro,
and in cells. These results suggest that the process is tightly
connected to the length of the CKI protein’s carboxyl terminus
(Narasimamurthy et al., 2018). The progressive phosphorylation
in this region, called FASP, which is named after the familial
advanced sleep phase syndrome (see section Phosphorylation
Aberration and Diseases), leads to the stabilization of the PER2
protein. Mutations in the phosphodegron site (Ser-477) led to
an extended circadian period in cell culture, while mutation on
the priming site at Ser-659 led to faster degradation of PER2
and shorter period length (Vanselow et al., 2006; Masuda et al.,
2020). These observations suggest that there is a competition
between the two sites (phosphodegron and FASP) for the CKI-
mediated phosphorylation. Additionally, the tau mutation—
CK1ε gain of function-shows a lower affinity for the FASP
region compared to the phopshodegron (Philpott et al., 2020).
This observation may explain why PER2 is least stable in mice
CK1ε tau (Meng et al., 2008). However, it is still not completely
clear how CKI can choose between the degradation and the
stabilization of PER2. The so-called “phosphoswitch model” has
been proposed to explain this mechanism, which is based on the
original property of CKI kinases that phosphorylate PER2 in a
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TABLE 1 | Light-dark related phosphorylation of clock components.

Protein a.a. Function Kinase Validation method References

CLOCK Thr451

Thr461

Promoting nuclear localization CDK5 - In vitro kinase

assay

- Site-directed

mutagenesis

Kwak et al., 2013

Ser440

Ser441

Ser446

Transactivation Unknown - Mass

Spectrometry

Robles et al., 2017

Ser38

Ser42

Inhibition of transactivation Unknown - In vivo

proteomics

analysis

Yoshitane et al., 2009

Ser431 - Primes GSK3 β

- Phosphorylation of CLOCK

Unknown - Site-directed

mutagenesis

Spengler et al., 2009

Ser427 - Nucleus/cytosol shuttling

- Degradation

GSK3 β - Site-directed

mutagenesis

Spengler et al., 2009

BMAL1 Ser90 - Heterodimerization with CLOCK

- Transactivation

CK2 - In vitro kinase

assay

- In vivo

phosphospecific

antibody

Tamaru et al., 2009

Ser17

Ser21

Protein degradation GSK3 β - In vitro kinase

assay

- Site-direct

mutagenesis

Sahar et al., 2010

CRY1 Ser588 Protein stabilization Unknown - Site-direct

mutagenesis

Gao et al., 2013

Ser247 Inhibition of CLOCK: BMAL transcriptional

activity

MAPK - In vitro kinase

assay

- Site-direct

mutagenesis

Sanada et al., 2004

CRY2 Ser265 Protein stabilization MAPK - In vitro kinase

assay

- Site-direct

mutagenesis

Sanada et al., 2004

Thr300 Protein degradation Unknown - Indirect Fang et al., 2015

PER1 - Ser902

- Ser916

Protein degradation CKI - In vitro kinase

assay

- In vivo mobility

shift

Vielhaber et al., 2000

PER2 Ser394 - Heterodimerization with CRY

- Nuclear localization

- Protein stabilization

CDK5 - In vitro kinase

assay

- Site-direct

mutagenesis

- Mass Spectrometry

- In vivo

phosphospecific

antibody

Brenna et al., 2019

Ser477 Protein degradation CKI - In vitro kinase

assay

Eide et al., 2005

Ser-53 Protein degradation CK2 - In vitro kinase

assay

- Site-direct

mutagenesis

Tsuchiya et al., 2009

Ser659

Ser662

Ser665

Ser671

- Protein stabilization

- Phosphoswitch

- Temperature compensation

CKI - In vitro kinase

assay

- Site-direct

mutagenesis

Eng et al., 2017

The color refers to the protein for easier readability.
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FIGURE 4 | Phosphoswitch model. PER2 regulates the speed of the circadian clock through the axis CDK5-CKI. When PER2 is phosphorylated by CDK5 it is

stabilized and it goes into the nucleus. Under normal conditions, nuclear PER2 is phosphorylated by CKI ε/δ at Ser-477 which is followed by nucleus/cytoplasm

shuttling and proteasomal degradation. However, following a switch on the temperature, PER2 can be phosphorylated at the FASP sites (pS659-662-665-668-671),

which stabilizes the protein. As consequence, the clock is slowed down. Additionally, CDK5 and CKI can reciprocally regulate their activity, speeding up or slowing

down the clock accordingly.

temperature-insensitive manner (Isojima et al., 2009; Zhou et al.,
2015; Shinohara et al., 2017).

According to this model, PER2 phosphorylation at Ser-477 is
involved in the regular circadian regulation at 30◦C. In contrast,
the cascade primed by Ser-659 is involved in temperature
compensation when the temperature is raised at 37◦C. These
results would suggest two directions for the phosphoswitch,
one toward FASP at a higher temperature, and one toward
the phosphodegron at a lower temperature, as also suggested
by others (Hirano et al., 2016). However, this conclusion is in
contrast with other observations. For instance, PER2 is essential
for adaptation to cold temperatures. Mice lacking PER2 were
more sensitive to the cold because their thermogenesis system
failed to adapt to the new temperature, which means PER2
needs to be stabilized at low temperatures as much as at higher
(Chappuis et al., 2013). Thus, another appealing hypothesis
might be that once in the nucleus, PER2 can be phosphorylated
by CKI through the phosphodegron at serine 477, which drives
the protein degradation under constant temperature conditions.

When a drastic temperature change stresses the organism, PER2
is stabilized through the phosphorylation cascade within the
FASP region to promote more efficient thermogenesis and
adaptation (Figure 4).

FEEDING-DRIVEN PHOSPHORYLATION OF
THE CLOCK

The light: dark alternation is the primary circadian entrainment
by imposing the timing of sleep/wake cycles. These cycles adjust
our behavioral schedules, including feeding time. However,
feeding time is the most potent zeitgeber in peripheral clocks.
Time-restricted feeding (between ZT5-11 at daytime) can re-
entrain circadian liver gene expression in arrhythmic SCN-
lesioned mice (Hara et al., 2001). Food can entrain the
rhythmicity inducing metabolites production and hormones,
whose secretion is controlled by fasting-feeding cycles. For
instance, the insulin level is very low during the day, when
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mice are sleeping (and fasting) while insulin levels increase at
the beginning of the night after eating in the active phase. In
this paragraph, we discuss the phosphorylation of clock proteins
that are connected to the feeding driven oscillations using
specific criteria:

- Phosphorylations mediated by kinases that are connected to
the mTOR pathway, which is sensitive to the feeding-fasting
cycle in the liver (see section Phosphorylation Clock: From the
Cellular to the Systemic Level for details);

- Phosphorylation mediated by kinases activated by time-
restricted feeding

- Phosphorylation of clock proteins that are proven to be
functional only in the liver, but not in the SCN

- Phosphorylation mediated by kinases which affect the food
intake and feeding schedule

- Phosphorylation mediated by kinases that are involved in the
whole-body lipid/glucose homeostasis.

It has been demonstrated that AKT can be activated upon the
increased level of insulin through the PI3K/AKT pathway (see
section Phosphorylation Clock: From the Cellular to the Systemic
Level), and therefore phosphorylate CLOCK at Serine-845.

This phosphorylation site was originally identified as an ASK
kinase-dependent and cellular stress-responsive phosphorylation
site (Imamura et al., 2018). This modification appears to be
responsible for the shuttling of the protein from the nucleus
to the cytoplasm (Luciano et al., 2018) (Figure 5, ZT12-16).
Here, CLOCK binds 14-3-3, which confines the circadian protein
in the cytoplasm (Noguchi et al., 2018) (Figure 5, ZT16-20).
CLOCK S845A mice showed a regular clock in the SCN
but not in the peripheral tissues, suggesting that this specific
phosphorylation is more important in the liver than in the SCN
(Luciano et al., 2018).

Insulin can modulate the nuclear accumulation of BMAL1
in hepatocytes via phosphorylation by AKT at Serine 42
(Ser-42), promoting its dissociation from the chromatin and
cytoplasmic confinement driven by 14-3-3 (Figure 5 ZT12-16)
(Dang et al., 2016). Subsequently, BMAL1 is phosphorylated
by Ribosomal protein S6 kinase beta-1 (S6K1) again at Ser-
42 through the insulin- mammalian target of rapamycin
(mTOR) pathway (see section Phosphorylation Clock: From the
Cellular to the Systemic Level). BMAL1 rhythmically associates
with S6K1 and the translational machinery in the cytoplasm,
and the phosphorylation at Ser-42 is required to promote
protein translation, closing the transcriptional-translational
feedback loop of the circadian clock (Lipton et al., 2015)
(Figure 5, ZT16-24).

On the other hand, under restricted feeding conditions (access
to food only 4-h during the light phase), Protein Kinase Cγ

(PKCγ) can phosphorylate BMAL1. This modification reduces
the ubiquitination and stabilizes the protein, causing a circadian
phase shift (Zhang et al., 2012). PKCγ seems to be very sensitive
to the food intake, since its daily activation profile changes during
the restricted feeding compared to ad libidum, in mice kept under
12:12 light/dark conditions. PKCγ-mediated phosphorylation
of BMAL1 seems dispensable during the normal light: dark
entrainment, but it seems to be an essential regulator of BMAL1

under restricted feeding. AKT (which is activated by insulin
increase) can modulate GSK3β through the pathway AKT-
GSK3β, and this can counteract PKCγ activity on BMAL1. These
observations suggest that food can synchronize the circadian
clock through the axis GSK3β-BMAL1-PKCγ.

The mTOR pathway regulates PER1 nuclear shuttling in
the liver. After nighttime feeding, mTOR phosphorylates Tight
Junction Protein 1 (TJP1). This protein is located on a
cytoplasmic membrane surface of tight intercellular junctions,
where it traps PER1. Once the mTOR pathway is active, the
heterodimer TJP1: PER1 is disassembled, promoting PER1
nuclear localization. Here, the clock factor can inhibit CLOCK:
BMAL1 transcriptional activity (Liu et al., 2020).

Phosphorylation of PER1 at Serine-714 (Ser-714) in the liver is
associated with the regulation of feeding rhythms and food intake
(Liu et al., 2014) (Figure 5, ZT12-16). PER1S714G mice exhibit an
advanced phase of feeding behavior, a propensity to obesity on
a high-fat diet. At the molecular level, it has been proposed that
pSer-714 is necessary to keep “on time” the feedback loop, and
PER1S714G mice showed an accelerated speed of the cycle.

By mass spectrometry, and subsequently biochemical
experiments, it was observed that phosphorylation mediated by
5′-adenosine monophosphate-activated protein kinase (AMPK),
in the liver, at Serine-71 (Ser-71) and, to a lesser extent, at
Serine-280 (Ser-280) are involved in the regulation of CRY1
stability (Lamia et al., 2009) (Figure 5, ZT12-26). Due to the
role of AMPK as a fasting sensor (see section Phosphorylation
Clock: From the Cellular to the Systemic Level for details),
this evidence proved a direct connection between metabolism
and the circadian clock. The diurnal peak of CRY1 protein
accumulation is in antiphase with one of AMPK, supporting the
idea that nuclear AMPK can drive CRY1 degradation (Lamia
et al., 2009) (Figure 5, ZT16-20).

Rescue experiments performed in vitro on HEK 293, where
Cry1 was suppressed, showed that CRY1 S to G 71 was not
able to restore the circadian rhythmicity compared to wt CRY1
(Liu and Zhang, 2016). However, an extensive investigation
performed on mice mutant for Ser-71 led to evidence that
the specific phosphorylation site does not show any impact on
in vivo regulation of the circadian behavior (Vaughan et al.,
2019). These observations raise the question of whether CRY1
phosphorylation works only as a metabolic sensor.

Hypothalamic Dual specificity tyrosine-phosphorylation-
regulated kinase 1a (Dyrk1a) regulates food intake in mice (Hong
et al., 2012). CRY2 is phosphorylated by DYRK at Ser-557 in
the mouse liver, and this modification rhythmically oscillates
over the day (Kurabayashi et al., 2010). Then, pSer557-CRY2 is
used as a priming site for GSK3 beta-mediated phosphorylated
at Ser-553 (Harada et al., 2005), suggesting that the axis DYRK-
GSK3 beta can affect CRY2 stability (Kurabayashi et al., 2010). A
point mutation at Ser-557 stabilizes the protein, thus lengthening
the period (Hirano et al., 2014). Additionally, pSer-557 CRY2
colocalized mostly into the nucleus, suggesting that the specific
phosphorylation drives CRY2 degradation by multiple steps.
In detail, GSK-3β-mediated CRY2 phosphorylation is primed
by DYRK1A, which phosphorylates the protein at the amino
acid Ser-557 (Kurabayashi et al., 2010) (Figure 5 ZT12-16).
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FIGURE 5 | Feeding regulates phosphorylation mediated circadian cycle in liver. During the fasting period, CLOCK and BMAL heterodimer goes into the nucleus, and

here upon phosphorylation they initiate the gene expression. During the early night, in the transition between fasting and feeding a nuclear macromolecular complex is

(Continued)
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FIGURE 5 | assembled on the promoter of clock-controlled genes, formed by CLOCK, BMAL1, PER2, PER1, AKT (activated by insulin) DYRK1A, CRY1, CRY2, and

AMPK. As consequence, CKOCK is phosphorylated at serine 845, BMAL1 at serine 42, CRY1 at serine 71 and 280 (AMPK), PER1 at serine 714. All these events

drive the transition from transactivation to gene repression. BMAL1 pSer-42 translocated into the cytoplasm where it is phosphorylated again at serine 42 by S6K1.

This signal triggers protein synthesis which is driven by the complex formed by BMAL1, S6KI, 14-3-3, eIF4F, and eIF3B. On the other hand, CLOCK (pSer-845), CR2

(pSer-553, pSer-557), CRY (pSer-71, pSer280), PER1 (pSer-714) are degraded in the cytoplasm, via proteasome.

TABLE 2 | Feeding-related phosphorylation of clock components.

Protein a.a. Function Kinase Validation method References

CLOCK Ser845 - Nucleus/cytosol shuttling

- Dimerization with 14-3-3

AKT - In vitro kinase

assay

- Site-direct

mutagenesis

Luciano et al., 2018

BMAL1 Ser42 Nucleus/cytosol translocation AKT - In vitro kinase

assay

- Site-direct

mutagenesis

- Mass

Spectrometry

Dang et al., 2016

Initiation of ribosomal translation S6K1 - In vitro kinase

assay

- Site-direct

mutagenesis

- Mass

Spectrometry

- In vivo

phosphospecific

antibody

Lipton et al., 2015

CRY1 Ser71

Ser280

Protein degradation AMPK - In vitro kinase

assay

- Site-direct

mutagenesis

- Mass

Spectrometry

Lamia et al., 2009

CRY2 Ser553 Protein degradation GSK3 β - In vitro kinase

assay

- Site-direct

mutagenesis

Kurabayashi et al., 2010

Ser557 Protein degradation Dyrk1a - In vitro kinase

assay

- Site-direct

mutagenesis

Kurabayashi et al., 2010

PER1 Ser714 Protein degradation Unknown - Indirect Liu et al., 2014

Rev-Erbα Thr275 Protein degradation CDK1 - In vitro kinase

assay

- Site-direct

Mutagenesis

- In vivo

phosphospecific

antibody

Zhao et al., 2016

The color refers to the protein for easier readability.

This phosphorylated form can bind GSK-3β, which drives the
degradation pathway of CRY2 via Ser-553 phosphorylation
(Figure 5, 16-24). However, the E3 ligase involved in these
pathways is still unknown. Due to the role of DYRK1A in
the regulation of food intake, the phosphorylation of CRY2
might suggest a further connection between circadian rhythms
and feeding.

REV-ERBα is a nuclear receptor involved in the
stabilizing loop of the circadian clock mechanism

with a role as s transcriptional repressor. It exerts its
functions through binding to genomic response elements
(termed ROREs). This kind of regulation is balanced
by the positively acting orphan nuclear receptors RORa
(Sato et al., 2004; Takeda et al., 2012).

REV-ERBα is also phosphorylated at Threonine-275 (Thr-
275) by Cyclin-Dependent-Kinase 1 (CDK1) in the mouse
liver (Zhao et al., 2016). CDK1-mediated phosphorylation
drives the degradation of REV-ERBα via F-Box and WD
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Repeat Domain Containing 7 (FBXW7). The phosphorylation at
Thr-275 oscillates during the day, with a peak during the early
morning, when the total protein amount is lower. Knock out
of both CDK1 and FBXW7 impairs the circadian rhythmicity’s
amplitude. As a consequence, expression of genes involved
in lipid and glucose metabolism, such as Insig2 and G6Pase,
is aberrant, influencing liver steatosis, and gluconeogenesis.
These results altogether showed the importance of post-
translational regulation as coordinator of the body energy
and homeostasis.

Finally, CDK9 interacts with REV-ERBα and attenuates the
binding to the RORE elements.

A schematic summary of themain phosphorylations discussed
is shown in Table 2.

PHOSPHORYLATION CLOCK: FROM THE
CELLULAR TO THE SYSTEMIC LEVEL

In the last few years, large-scale analysis of post-translational
modifications, such as phosphorylation, became accessible to
most of the laboratories. The first circadian phosphoproteome
database was obtained from the liver, which is the tissue
that displays the most robust circadian activity, together
with the SCN (Robles et al., 2017). Interestingly, 25% of the
phosphopeptides on over 40% of the identified phosphoproteins
showed oscillations over 24 h. This large amount of oscillating
phosphopeptides was highly astonishing, considering that only
10% of the total transcriptome displayed circadian oscillation
in gene expression (Panda et al., 2002a; Storch et al., 2002). The
amplitude of the circadian phosphoproteome was four times
higher than the one of the entire liver proteome (Robles et al.,
2014, 2017). These results suggested that phosphorylation
is one of the most robust markers of rhythmicity in
this organ.

Interestingly, the oscillating phospho-sites that were identified
from the Mass-Spec belonged to signaling pathways involved
in insulin signaling, autophagy, circadian rhythms, and TGF-
beta signaling. These findings supported the hypothesis that
post-translational modification connects circadian rhythms with
physiological processes. Phosphopeptide oscillations showed
peaks in two different temporal windows around the day, one
around the circadian time (CT) 4–6 when the light is on,
and the second around CT 15–17 when the light is off. These
peaks were in opposition to the ones observed for the total
proteome (Robles et al., 2014, 2017). These pieces of evidence
suggested that there is a group of kinases activated during the
resting/fasting phase (corresponding to the light on) and another
activated during the active/feeding period (corresponding to the
light off).

An example of a phosphorylation cascade, that is activated
during the light phase is the AMPK signaling pathway. The
adenosine monophosphate (AMP)–activated protein kinase
(AMPK) is a serine/threonine kinase, which is activated by ATP
exhaustion that leads to an increase of AMP, a usual signal
of cellular stress (Hardie, 2007). The AMPK cascade is under
the control of both circadian clock and feeding, which couples

metabolic state with circadian rhythmicity (Suter and Schibler,
2009). During the sleeping phase [zeitgeber time (ZT) 0–12, light
on], the AMP/ATP ratio continuously increases up to ZT12. The
AMP accumulation increases in the cells and the factor binds
AMPK. This binding provokes a change of conformation in the
AMPK quaternary structure.

As a consequence, the Threonine-172 (T-172) is exposed,
and it can be phosphorylated by Liver Kinase B1 (LKB1),
which itself is sensitive to changes in AMP/ATP levels. This
specific modification activates AMPK, which subsequently
phosphorylates many targets. This mechanism is a direct readout
of diurnal metabolic changes (Shackelford and Shaw, 2009; Lee
and Kim, 2013) (Figure 6, light phase).

For instance, upon phosphorylation, AMPK positively
regulates the NAMPT accumulation. NAMPT is one of the
essential molecular connectors between metabolic changes and
circadian regulation in peripheral tissues (Nakahata et al., 2009;
Ramsey et al., 2009). This accumulation enhances the Silent
Information Regulator 1 (SIRT1) histone deacetylase activity,
which then regulates the molecular clock (Asher et al., 2008;
Nakahata et al., 2008).

Another example of how phosphorylation ties metabolism
to circadian rhythm is the AMPK-mTOR-AKT axis (Figure 6).
The mammalian target of rapamycin (mTOR) pathway is a
crucial point in the regulation of metabolism and physiology
in mammals (Laplante and Sabatini, 2012). mTOR presents
at least two different multiprotein complexes, mTORC1
and mTORC2. The Regulatory-associated-protein of mTOR
(RAPTOR) is a member of the mTOR cascade signaling. In
the absence of nutrients (morning fasting), AMPK is active,
and it phosphorylates RAPTOR at serine-792 (Ser-792). The
phosphorylated protein can subsequently bind 14-3-3, which
belongs to the family of regulatory molecules, and this increases
the affinity of RAPTOR for mTORC1 (Xu et al., 2012).

As a consequence, this cascade leads to the inhibition of
mTORC1 during the light phase. Additionally, AMPK can
phosphorylate Tuberous Sclerosis Complex 2 (TSC2). This
form of TSC2 can inhibit the conversion of Ras homolog
enriched in the brain (RHEB, a GTP-binding protein) from
GDP to GTP-bound. The RHEB-GDP is not able to activate the
mTOR pathway.

On the other hand, the mTOR pathway is positively regulated
at night by AKT. AKT, also known as PKB, is a cytosolic kinase
involved in the Phosphoinositide 3-kinase (PI3K)-AKT pathway.
In the presence of specific ligands, for instance, an increased
level of insulin, phosphoinositide 3-kinase (PI3K) is activated.
The PI3K cascade promotes AKT phosphorylation, and therefore
activation. Active AKT phosphorylates TSC2 at different sites
(Ser-939, Ser-981, Thr-1462, Ser-1130, Ser-1132). This modified
form of TSC2 inhibits the conversion of RHEB-GTP to RHEB-
GDP. Thus RHEB in its GTP-bound form can trigger the
mTOR pathway to promote ribosome biogenesis, which couples
circadian phosphorylation and energy stress (Jouffe et al., 2013;
Robles et al., 2017; Cao, 2018). Altogether, these observations
show that the AMPK-AKT axis regulates the mTOR pathway in a
circadian way mediating the transition from the resting phase to
the active phase in mice.
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FIGURE 6 | Diurnal regulation of the mTOR pathway. During the light phase (ZT0-ZT12), mice are sleeping and therefore fasting. Fasting is a specific stimulus that

drivers AMP accumulation at the expense of ATP. AMP accumulation triggers AMPK activation via phosphorylation at Threonine 172 (Thr-172) mediated by LKB1. The

(Continued)
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FIGURE 6 | active AMPK can phosphorylate RAPTOR at serine 792 (Ser-792) which subsequently interacts with 14-3-3 and inhibits mTOR. In parallel, AMPK can

phosphorylate TSC2 at an unknown phosphosite. The phosphorylated TSC2 inhibits the conversion of RHEB-GDP (inactive) to the active form RHEB-GTP, which is a

positive regulator of mTOR. As a consequence, the mTOR pathway is shut down. On the other hand, at night (ZT12-ZT24) when mice are active and they are feeding,

the internal level of insulin is increasing. This event promotes the PI3K-AKT cascade, which ends with an active form of AKT phosphorylating TSC2 at different sites

(Thr-1462, Ser-939, Ser-981, Ser-1130, Ser-1132). The hyperphosphorylated TSC2 inhibits the conversion of RHEB-GTP to RHEB GDP, thus the active RHEB-GTP

can turn on the mTOR pathway. AMP, Adenosine MonoPhosphate; ATP, Adenosine TriPhosphate; LKB1, Liver Kinase B1; AMPK, 5′ Adenosine

Monophosphate-activated Protein Kinase; TSC2, Tuberous Sclerosis Complex 2; RHEB, Ras Homolog Enriched in Brain; GTP, Guanosine TriPhosphate; GDP,

Guanosine DiPhosphate; IRS1, Insulin Receptor Substrate 1; PI3K, PhosphatidylInositol-3-Kinase; PIP2, Phosphatidylinositol 4,5-bisphosphate; PIP3,

Phosphatidylinositol (3,4,5)-trisphosphate; AKT, AKR Thymoma; mTOR, mammalian Target Of Rapamycin; p, phosphorylated; s, serine.

PHOSPHORYLATION ABERRATION AND
DISEASES

Phosphorylation is an essential mechanism for modulating
biological responses. Alteration of kinases activity or point
mutations on target sequence can lead to many diseases as, for
instance, Advanced Sleep Phase Disorder (ASPD) (Auger, 2009).
The Familial Advanced Sleep Phase Disorder (FASP) is the most
famous case belonging to the ASPD. Subjects with this disease
show an alteration of the circadian period of free-running, which
is shorter than healthy individuals.

As a consequence, it causes an earlier onset and offset,
which impacts the social life of these individuals. The
first clock-gene mutation causing FASP discovered was
the hPER2 S662G (mPER2 S659), which destabilizes
the protein causing a shortening of the period length
(Toh et al., 2001).

Additionally, PER1 S714G also is involved in the FASP
showing advanced sleep-wake rhythms (Liu et al., 2014). Both
human PER1 and PER2 are phosphorylated, and they interact
with CK1ε (Keesler et al., 2000; Camacho et al., 2001). As also
expected, CKIδ mutation (Thr-44A) causes FASP (Xu et al.,
2005). On the other hand, a mutation of CRY1 is responsible
for Delayed Sleep Phase Disorder (DSPD). This mutation causes
a deletion of 24 amino acids within the C-Term region, which
is an essential target of kinases. As a consequence, CRY is more
abundant in the nuclei, causing a lengthening of the period (Patke
et al., 2017).

CDK5 is an essential kinase involved in neurogenesis.
Aberration in CDK5 kinase activity leads to Neuro Degenerative
diseases (NDs) (Kawauchi, 2014). Since CDK5 kinase activity
shows a diurnal profile (peaking during the night phase),
we can assume that alteration in the day-night cycles can
be responsible for ND malignancies. CKI was discovered
to be aberrant in NDs, suggesting a further connection
between circadian kinase activity and diseases (Schwab et al.,
2000). Alteration of GSK-3β is involved in mood disorders,
which have been strongly connected to circadian disorders
(Li and Jope, 2010).

Many forms of cancer are connected to circadian aberrations.
For instance, alteration in the pathway of CRY1 Thr-300
phosphorylation within the phosphodegron is associated with
the chemoresistance of colorectal cancer (Fang et al., 2015).
The mTOR pathway alteration is involved in many forms of
cancer as well, which are connected to the circadian clock at
the epidemiological level. Since obesity or generally, metabolic

disorders are often associated with cancer development, the
role of the mTOR pathway, which is regulated by the daily
oscillation between fasting and feeding, might connect these
different health issues (Swierczynska and Hall, 2016). However,
many therapies nowadays imply the use of drugs that can
target these kinases modifying even the circadian clock.
For instance, the photocaged longdaysin is a purine-based
inhibitor of CKIα, CKIδ and ERK2 that increases circadian
period in cells (Hirota et al., 2010; Kolarski et al., 2019).
Additionally, the compound PF670462 inhibits Casein Kinase
1 δ/ε and lenghtens circadian period (Meng et al., 2010).
Furthermore, this inhibitor has anti-fibrogenic effects (Keenan
et al., 2018). Nevertheless, the question remains whether these
therapies should require a chrono-pharmacological approach
due to the difference between subjects in terms of daily
expression of proteins that are the target of these drugs
(Griffett and Burris, 2013).

CONCLUSIONS

Here we described the role of phosphorylation on the circadian
clock and vice versa. Although the transcriptional-translational
feedback loop is considered as a central dogma for the circadian
clock regulation (Hurley et al., 2016), many pieces of evidence
suggest that it is not themost critical mechanism for coordinating
rhythmicity. It has been demonstrated that the rhythmicity of
mRNA is not necessarily predictive of the rhythmicity of its
cognate protein, and proteins with a non-cyclic accumulation
over the day can still generate rhythmic responses through
PTM modifications (Mauvoisin et al., 2014). For instance, post-
translational rhythms were observed in enucleated human red
blood cells without oscillating mRNA (O’Neill and Reddy, 2011).
This is a quite conserved mechanism across species. For instance,
it has been shown that the phosphorylation of FRQ, which is
the negative regulator of the circadian feedback loop, rather than
its quantity, is crucial for the determination of the circadian
period in Neurospora (Larrondo et al., 2015). Altogether these
observations highlight the relevance of PTM modifications,
such as phosphorylation, in the generation of circadian
rhythmicity, which seems to be as crucial as the transcriptional-
translational paradigm. Additionally, we emphasized the role
of the phosphorylation in metabolic pathways tied to the
molecular clock and how dangerous for health the disruption
of such mechanisms can be. Many compounds can regulate
the activity of kinases. For instance, specific drugs can block
the PI3K signaling (described in this review) inhibiting tumor
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growth (Jamieson et al., 2011). However, because this specific
pathway (not only this) is driven by insulin peak associated
with the circadian food intake, it would also be probably
necessary to dose the drug at the appropriate time during the
day, to be more successful. This aspect, time-related and not
only dose-related, belongs to the growing field of the chrono-
pharmacology, called “the medicine in the fourth dimension,”
which is the future of the therapeutic approaches to diseases
(Cederroth et al., 2019).
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